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Abstract We apply the Extended Kinetic Theory (EKT) to the dense, sim-
ple shear flow of inelastic hard spheres. EKT is a phenomenological extension
of kinetic theory which aims at incorporating in the simplest possible way the
role of pre-collisional velocity correlations that is likely to occur at concen-
tration larger than the freezing point. The main effect of that correlation is
the decrease in the rate at which fluctuating energy is dissipated in inelastic
collisions. We use previously published results of numerical simulations per-
formed using an event-driven algorithm to obtain analytical expressions for
the radial distribution function at contact (which diverges at a concentration
lower than the value at random close packing for sheared inelastic spheres)
and the correlation length (i.e., the decreasing factor of the dissipation rate)
at different values of the coefficient of restitution. With those, we show that,
when the diffusion of fluctuating energy of the particles is negligible, EKT
implies that three branches of the analytical relation between the ratio of the
shear stress to the pressure and the concentration (granular rheology) exist.
Hence, for a certain value of the stress ratio, up to three corresponding values
of the concentration are possible, with direct implications on the existence
of multiple solutions to steady granular flows.
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1 Introduction

Classic kinetic theories [24,37,15,17] have been successful in describing the
behaviour of granular flows at low to moderate concentration. On the other
hand, at large concentration, pre-collisional velocity correlation [40,32,33]
and enduring contacts among particles involved in force chains [38,10] ap-
pear; hence, both the molecular chaos and the instantaneous bynary collision
assumptions of classic kinetic theories fail. Unfortunately, most of the gran-
ular flows of practical interest are actually dense, and this explains why the
scientific literature on the topic has grown esponentially in the recent years
(e.g., see Ref. [13] for a recent review).

Substantially, two approaches have been proposed to model dense gran-
ular flows. One is entirely phenomenological and makes use of dimensional
analysis to identify the dimensionless parameters governing the problem, i.e.,
the stress ratio, the inertial parameter and the concentration, at least in case
of rigid particles (see later in the text for more details). Physical experiments
and numerical simulations are then employed to obtain a posteriori approxi-
mate algebraic relations (i.e., the granular rheology) between those parame-
ters [16,10,27,28]. The simplicity of this approach, that can be easily applied
to a number of flow configurations, and even extended to deal with non-
locality [29], explains its increasing popularity. The other approach is more
fundamental and relies on kinetic theories by: (i) adding rate-independent
terms borrowed from soil mechanics to the constitutive relations of classic
kinetic theories to take into account the effects of enduring contacts [25,26,
36]; (ii) extending in a phenomenological way the classic kinetic theories to
take into account the decrease in the rate at which energy is dissipated in
collisions due to the pre-collisional velocity correlation [20,21]; (iii) both [6].

Here, we wish to apply the Extended Kinetic Theory (EKT) as proposed
by Jenkins [20,21], and lately slightly modified and tested in a number of
gravity-driven flow configurations [22,5,4,23], to the simple shear flow of in-
elastic, hard spheres. Many works have focused on shear flows of granular
materials [3,42,18,2,45,7,41], with and without interstitial fluid. None of
them though made use of EKT to solve for the flow field. It has been shown
[32] that, besides the already mentioned decrease in the collisional dissipa-
tion rate, sheared inelastic granular flows show an increase of the collision
frequency, which diverges at a concentration lower than the value at random
close packing. The simplest possible way to incorporate this effect is to mod-
ify the radial distribution function at contact. The comparison between the
analytical solution of EKT and previously published numerical simulations
[40], performed using an event-driven algorithm, on frictionless hard spheres
permit to obtain the analytical form of the radial distribution function for
different coefficients of restitution; and to obtain a new formulation for the
correlation length (i.e., the decreasing factor in the collisional dissipation
rate) that depends only on the coefficient of restitution, without requiring
additional ad hoc parameters.

Besides EKT, many works have introduced a diverging length-scale to
deal with correlation in granular matter. Some of them [35,34,11] focus on
the spatial correlation existing in the quasi-static regime dominated by the
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presence of force chains, due to the rearrangements of grains after a failure,
which is though different from the pre-collisional velocity correlation induced
by the inelastic nature of collisions of EKT (the former is, for instance, absent
in the case of frictionless hard spheres). A diverging length-scale associated
with correlation that applies also to the case of frictionless hard spheres has
been proposed by Lois and Carlson [35] in their force network model. Besides
the fact that no analytical expression for that legth-scale is proposed, the
main drawback is that the diverging length-scale appears in the expression
of the stress tensor (multiplying the square of the shear rate). In that case,
the ratio of shear stress to the pressure would be a constant for dense gran-
ular shear flows, i.e., independent of the concentration, in contrast with the
results of numerical simulations [10,39,40,32,33]. Recently [29,19], a diverg-
ing length-scale associated with particle correlation has also been introduced
in a differential equation governing the spatial distribution of the inverse of
the viscosity for dense granular flows. That equation has been postulated to
take into account the influence of the boundaries (non-locality) in the con-
text of the phenomenological rheology based on the inertial parameter. Once
again, that correlation is different from the pre-collisional velocity correlation
of EKT, given that, for instance, the former is absent in the case of simple
shear flows.

2 Theory

We focus on simple shear flows of hard spheres in absence of external forces
(Fig. 1). We take x and y to be the directions parallel and perpendicular to
the flow, respectively. The only component of the local mean velocity vector
is u, while ν is the local value of the volume concentration. Without loss
of generality, we take the particle diameter and density to be unity. The
particles are characterized through the coefficient of restitution e, i.e., the
ratio of the magnitude of their relative velocity after and before a collision.
The momentum balances indicate that both the particle pressure p and the
particle shear stress s are constant in the flow field. The balance of the
fluctuating energy reduces to

su′
− Γ = 0, (1)

where Γ is the rate of collisional dissipation. Here and in what follows, a
prime indicates the derivative along y. The two terms on the left hand side
of Eq. (1) represent the energy production and dissipation, respectively.
Kinetic theories provide the closures to the problem, i.e., the constitutive re-
lations for the pressure, the shear stress and the rate of collisional dissipation.
Here, we adopt the expressions derived by Ref. [15], summarized in Tab. 1,
ignoring their small term c∗ and using the notations of Ref. [23]. There, T is
the granular temperature (one third of the mean square of the particle ve-
locity fluctuations) and g0 is the radial distribution function at contact. As
anticipated, EKT takes into account the fact that, when repeated collisions
induce correlated motion among the particles, the rate at which energy is
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Fig. 1 Sketch of the flow configuration.

Table 1 Constitutive relations from kinetic theory.

p = f1T

f1 = 4νGF

G = νg0

F =
1 + e

2
+

1

4G

s = f2T
1/2u′

f2 =
8JνG

5π1/2

J =
1 + e

2
+

π

32G2

[5 + 2G(3e− 1)(1 + e)] [5 + 4G(1 + e)]

24− 6(1− e)2 − 5(1− e2)

Γ = f3
T 3/2

L

f3 =
12νG(1− e2)

π1/2

dissipated decreases by the factor L (correlation length), whose expression
reads [21]

L = max

(

L∗
u′

T 1/2
, 1

)

, (2)

where the coefficient L∗ is a function of the concentration and the particle
properties. Eq. (2) ensures that, when the molecular chaos assumption holds,
L = 1, i.e., one diameter, as in classic kinetic theories. Jenkins and Berzi [22]
suggested to use

L∗ =
1

2
cG1/3, (3)

where c is a material coefficient of order unity. The presence of this additional
parameter, whose physical meaning is unclear, represents a weakness of the
theory. Also the determination of the most suitable expression for the radial
distribution function at contact for inelastic particles under shear is still an
open issue [40,32].

Mitarai and Nakanishi [40] performed event-driven numerical simulations
on shear flows of inelastic hard spheres in absence of gravity, using Lees-
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Table 2 Values of the singularity in the radial distribution function at different
values of the coefficient of restitution

e a νp νs
0.70 0.95 0.617 0.619
0.92 0.88 0.624 0.625
0.98 0.89 0.636 0.627

Edwards boundary conditions [12] along the direction perpendicular to the
flow. In this case, the shear rate u′, the granular temperature and the concen-
tration are constant in the flow field (Fig. 1). Using the constitutive relation
for the pressure of Tab. 1,

g0 =
1

2ν(1 + e)

( p

νT
− 1
)

. (4)

Hence, it is possible to obtain the radial distribution function at contact from
the measured values of pressure, granular temperature and concentration.
This differs from the approach of Ref. [40] and Ref. [32], where the radial
distribution function at contact was obtained in a more rigorous way from the
measured collisional frequency. However, the evaluation of g0 using Eq. (4)
ensures that kinetic theory correctly predicts the particle pressure. Figure 2
shows the dependence of g0 on the concentration obtained from Eq. (4), using
the measurements of Ref. [40] at three values of the coefficient of restitution
(e = 0.7, 0.92 and 0.98). The numerical values can be reproduced using an
expression in the form suggested by Ref. [44],

g0 =
a

νp − ν
, (5)

where a is a material coefficient and νp represents the concentration at which
the radial distribution function at contact is singular and the pressure di-
verges. That concentration would coincide with the concentration at random
close packing for elastic particles [44,43]. The values of a and νp, obtained
from linear regression, for the three values of the coefficient of restitution
investigated in Ref. [40] are reported in Tab. 2. Also shown in Fig. 2 is the
widely used radial distribution function at contact of Ref. [8]. It is worth
emphsizing that Eq. (5) cannot apply at low concentration, given that it is
different from unity when ν = 0. Also, Tab. 2 confirms that νp depends on
the degree of inelasticity, unlike suggested in Ref. [9].

With Eq. (1) and the constitutive relations of Tab. 1, the correlation
length can be written as

L = max

(

f3T
3/2

su′
, 1

)

(6)

and can be obtained from measured values of concentration, shear stress and
granular temperature, at fixed shear rate, if Eq. (5) is used in the expression
of f3 of Tab. 1. For simple shear flows, the correlation length is only a function
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Fig. 2 Dependence of the radial distribution function at contact on the concen-
tration obtained from pressure measurements in numerical simulations (symbols)
and Eq. (5) (lines) when: e = 0.7 (circles and solid line); e = 0.92 (squares and
dashed line); e = 0.98 (triangles and dot-dashed line). The dotted line represents
the expression of Ref. [8].

of the concentration and the material properties, given that, using Eqs. (6)
and (2) and the constitutive relations of Tab. 1,

L = max

(

f
1/3
3

f
1/3
2

L∗2/3, 1

)

. (7)

Figure 3 shows the correlation length as a function of the concentration
obtained using the measurements of Ref. [40] in Eq. (6). Below the concen-
tration at the freezing point νf = 0.49 [44], the correlation length is equal
to one, indicating that the particle motion is uncorrelated (molecular chaos).
Above νf , the correlation length increases linearly with g0. We propose the
following analytical expression for L,

L = max

[

2(1− e)

15
(g0 − g0,f ) + 1, 1

]

, (8)

where g0,f is the value of g0 at the freezing point. Figure 3 shows that Eq. (8)
interpolates well the numerical values. From Eqs. (8) and (7), we obtain the
expression of L∗

L∗ =

(

f2
f3

)1/2 [
2(1− e)

15
(g0 − g0,f ) + 1

]3/2

, (9)

that, unlike Eq. (3), contains only well defined physical quantities.
Figure 4 depicts the ratio of the shear stress measured in the numerical

simulations of [40] to that obtained from the constitutive relation of Tab. 1
using the measured values of concentration and granular temperature and
the imposed shear rate, and Eq. (5) for the radial distribution function at
contact. It can be noticed, as well known [1,40], that kinetic theories under-
estimate the shear stress for nearly elastic particles. On the other hand, the
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Fig. 3 Correlation length as a function of the concentration obtained from mea-
surements in numerical simulations (symbols) and Eq. (8) (lines) when: e = 0.7
(circles and solid line); e = 0.92 (squares and dashed line); e = 0.98 (triangles and
dot-dashed line).

agreement is much more acceptable for more inelastic particles. It has been
suggested that, in sheared flows, the shear viscosity diverges at a concentra-
tion lower than that at which the pressure diverges [14,30]. To check this, we
have plotted in Fig. 5 the ratio ν2T 1/2u′/s as a function of the concentration
obtained from the numerical simulations of Mitarai and Nakanishi [40]. In
the dense limit (i.e., for G → ∞), the constitutive relations of kinetic theory
indicate that that ratio should be proportional to the inverse of the radial
distribution function at contact, i.e., from Eq. (5), be a linear decreasing
function of the volume concentration, and vanish at ν = νp. Indeed, Fig. 5

shows that ν2T 1/2u′/s decreases linearly with the concentration when the
latter exceeds 0.5. The concentration νs at which ν2T 1/2u′/s vanishes (i.e.,
the shear viscosity diverges) for the different values of the coefficient of resti-
tution has been obtained by linear regression and reported in Tab. 1. Indeed,
for nearly elastic particles, the shear viscosity diverges at a concentration
lower than that at which the pressure diverges, so that regions of constant
velocity in presence of a gradient of concentration and granular temperature
[31] are possible. For more inelastic, and somehow more realistic, particles,
instead, both the shear viscosity and the pressure diverge at the same value
of concentration.

Using Eq. (6) and the constitutive relations of Tab. 1, we obtain the ratio
of the shear stress to the pressure,

s

p
=

(

f2f3
f2

1
L

)1/2

, (10)

which, in the case of simple shear flows, is only a function of the concentra-
tion. Similarly, we can obtain also the relation between the so called inertial
parameter I = u′/(p/ν)1/2 [16] and the concentration,

I =

(

νf3
f1f2L

)1/2

. (11)
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Fig. 4 Ratio of shear stress measured in numerical simulations to that obtained
from the constitutive relation of kinetic theory as a function of the concentration
when: e = 0.7 (circles); e = 0.92 (squares); e = 0.98 (triangles).
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Fig. 5 Quantity ν2T 1/2u′/s obtained from numerical simulations as a function of
the concentration when: e = 0.7 (circles); e = 0.92 (squares); e = 0.98 (triangles).

Equations (10) and (11) constitute the rheology of granular materials com-
posed of inelastic hard spheres. Although one might be tempted to use them
in solving any kind of problems involving granular flows, it must be em-
phasized that their validity is restricted to situations for which the algebraic
energy balance between production and dissipation holds. Figure 6 shows the
dependence of the stress ratio on the concentration predicted by Eq. (10) at
the two values of the coefficient of restitution for which the measured shear
stress is well predicted by kinetic theory (Fig. 4). As expected, more inelastic
particles are characterized by larger values of the stress ratio. The strong
non linearity of Eq. (10) is reflected by the fact that up to three values of
the concentration provides the same value of stress ratio. Those three values
belong to three different branches of the curve: (i) the dilute branch at con-
centrations less than about 0.2, where the stress ratio decreases with ν; (ii)
the moderate branch at concentrations in the range 0.2 to 0.49, where the
stress ratio mildly increases with ν; (iii) the dense branch at concentrations
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Fig. 6 Stress ratio as a function of the concentration as predicted by extended
kinetic theory for e = 0.7 (solid line) and e = 0.92 (dashed line). The circles
indicate multiple solutions at a given level of the stress ratio.

greater than 0.49, where once again the stress ratio decreases with ν. EKT
differs from classic kinetic theory in that the latter predicts that only two val-
ues of the concentration (those associated with the dilute and the moderate
branches) pertain to the same value of the stress ratio.

3 Conclusion

We have applied the Extended Kinetic Theory to the simple shear flow of
inelastic hard spheres. We have employed measurements of pressure, shear
stress and granular temperature at imposed concentration and shear rate
from event-driven numerical simulations reported in the literature to obtain
analytical expressions for the radial distribution function at contact and the
correlation length in the rate of collisional dissipation at different values of the
coefficient of restitution. The main results of this work are: (i) the pressure
diverges at a value of the concentration that decreases with the particle
inelasticity, as previously reported [32]; (ii) the correlation length, employed
instead of the particle diameter in the collisional rate of dissipation of EKT, is
larger than one diameter at concentrations higher than the freezing point, and
a simple analytical expression depending only on the coefficient of restitution
is provided; (iii) the fact that the shear viscosity diverges at a concentration
smaller than the pressure is a peculiar characteristic of nearly elastic particles,
and not a general feature. (iv) Finally, unlike in classic kinetic theories, the
analytical relation between the stress ratio and the concentration of EKT,
that is possible to obtain only when the diffusion of fluctuating energy is
negligible, presents three branches: one dilute for concentrations less than
0.2, one moderate for concentrations between 0.2 and 0.49 (freezing point),
and one dense for concentrations larger than 0.49. Hence, up to three values
of concentration pertain to the same value of the stress ratio. This might
have important consequences, e.g., on the stability of inclined flows and the
clustering phenomenon.
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